Release Notes

XFS Clarifications for
Device Class Interfaces

Revision 2.00.23

December 12th, 2005

3Introduction

4Generic Clarifications

4Clarifications for Execute Events

4Clarifications for Events

4Clarifications for Forms

4Clarifications for Status

4Clarifications for String Pointers

4Clarifications for lpszExtra in all commands and across all device classes

5Architectural and Implementation Issues

5Closing a Session

6Application Programming Interface (API) Functions

6Clarifications for WFSOpen

7Clarifications for WFSAsyncOpen

7Service Provider Interface (SPI) Functions

7Messages

7Clarifications for Device Status Changes

8Device Classes

8Printers

8Clarifications for WFS_INF_PTR_STATUS

8Clarifications for WFS_INF_PTR_QUERY_FORM

8Clarifications for WFS_CMD_PTR_CONTROL_MEDIA

9Clarifications for WFS_EXEE_PTR_NOMEDIA

9Clarifications for Form and Media Definitions

10Identification Card Units

10Clarifications for WFS_CMD_IDC_EJECT_CARD

10Clarifications for WFS_CMD_IDC_READ_TRACK

10Clarifications for WFS_CMD_IDC_WRITE_TRACK

10Clarifications for WFS_CMD_IDC_READ_RAW_DATA

11Clarifications for WFS_CMD_IDC_WRITE_RAW_DATA

11Clarifications for WFS_SRVE_IDC_MEDIAREMOVED

11Clarifications for WFS_USRE_IDC_RETAINBINTHRESHOLD

11Clarifications for Form Description

12Clarifications for guidance on the roles and responsibilities of an application in EMV:

12Cash Dispensers

12Clarifications for Section 2. Cash Dispensers

12Clarifications for WFS_INF_CDM_STATUS

12Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

13Clarifications for WFS_INF_CDM_MIX_TYPES

13Clarifications for WFS_INF_CDM_PRESENT_STATUS

14Clarifications for WFS_CMD_CDM_DENOMINATE

14Clarifications for WFS_CMD_CDM_DISPENSE

14Clarifications for WFS_CMD_CDM_PRESENT

14Clarifications for WFS_CMD_CDM_REJECT

15Clarifications for WFS_CMD_CDM_RETRACT

15Clarifications for WFS_CMD_CDM_CASH_IN

15Clarifications for WFS_CMD_CDM_SET_CASH_UNIT_INFO

15Clarifications for WFS_CMD_CDM_START_EXCHANGE

16Clarifications for WFS_CMD_CDM_END_EXCHANGE

16Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

16Clarifications for WFS_SRVE_CDM_CASHUNITINFOCHANGED

16Personal Identification Number Keypads (PIN Pads)

17References

17Clarifications for Section 2. Personal Identification Number Keypads

17Clarifications for WFS_INF_PIN_CAPABILITIES

19Clarifications for WFS_INF_PIN_FUNCKEY_DETAIL

20Clarifications for WFS_CMD_PIN_CRYPT

20Clarifications for WFS_CMD_PIN_IMPORT_KEY

20Clarifications for WFS_CMD_PIN_DERIVE_KEY

21Clarifications for WFS_CMD_PIN_GET_PIN

21Clarifications for WFS_CMD_PIN_LOCAL_DES

22Clarifications for WFS_CMD_PIN_CREATE_OFFSET

22Clarifications for WFS_CMD_PIN_LOCAL_VISA

23Clarifications for WFS_CMD_PIN_PRESENT_IDC

23Clarifications for WFS_CMD_PIN_GET_PINBLOCK

24Clarifications for WFS_CMD_PIN_GET_DATA

25Clarifications for WFS_CMD_PIN_INITIALIZATION

25Clarifications for WFS_EXEE_PIN_KEY

25Depository Unit

25Clarifications for WFS_CMD_DEP_ENTRY

26Text Terminal Unit

26General clarification

26Clarifications for WFS_INF_TTU_STATUS

26Clarifications for WFS_INF_TTU_CAPABILITIES

26Clarifications for WFS_CMD_TTU_WRITE

27Clarifications for WFS_CMD_TTU_READ

27Sensors and Indicators Units

27Clarifications for WFS_INF_SIU_CAPABILITIES

27Vendor Dependent Mode

27No clarifications

27Cameras

27No clarifications

Introduction

These release notes provide clarifications and explanations for the Device Class Interface Programmer’s References Revision 2.00. Rather than updating the Device Class Interface specifications each time a new clarification is required, CEN/ISSS established release notes should be developed that aggregates the clarifications and explanations. These release notes serve that purpose. The release notes will provide clarifications of problems reported to CEN/ISSS which do not require functional changes. When a Device Class Interface Programmer’s Reference is updated for functional changes then all clarifications contained in these release notes at the current revision level for that Device Class will be incorporated into the new revision.

The clarification will be incorporated into the appropriate section copied from the affected Device Class Interface Programmer’s Reference and be printed as bold and underlined.

Generic Clarifications

Clarifications for Execute Events

Execute events occur as a normal part of processing an WFSExecute command and they are always sent before the completion of the command.
Clarifications for Events

All events are issued at the time of first detection of the individual event and are issued once. Events related to threshold values are issued as soon as the threshold value is reached.

Example 1: for a container reaching a nearly full threshold then the event reported is issued once and is not repeated on subsequent commands when that threshold level is unchanged.

Example 2: for media taken then the event is reported immediately the removal is detected.

Example 3: for detection of invalid data on all three tracks of an ID Card then three separate INVALIDTRACKDATA execution events are reported.
Clarifications for Forms

For all devices using forms, i.e. PTR, TTU, IDC add a description to read: The order of attributes within the forms is not mandatory and the attributes may be defined in any order.
Clarifications for Status

The status WFS_xxx_DEVBUSY (where "xxx" refers to the device class) is defined to be "The device is busy and not able to process an Execute command at this time.".
The status WFS_xxx_DEVOFFLINE (where "xxx" refers to the device class) is defined to be "The device is offline (e.g. the operator has taken the device offline by turning a switch or pulling out the device).".

The status WFS_xxx_DEVPOWEROFF (where "xxx" refers to the device class) is defined to be "The device is powered off or physically not connected.".

The status WFS_xxx_DEVNODEVICE (where "xxx" refers to the device class) is defined to be "There is no device intended to be there; e.g. this type of self service machine does not contain such a device or it is internally not configured.".

Clarifications for String Pointers

If a string pointer is not used it can be set to a NULL pointer, a pointer to one NULL character or a pointer to two NULL characters, unless otherwise specified.

Clarifications for lpszExtra in all commands and across all device classes

The description of lpszExtra is changed to read:
lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extendable by service providers. Each string is null-terminated, the whole list terminated with an additional null character. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.
Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the CEN/ISSS Extensions for Financial Services (referred to hereafter as “XFS” for brevity).

In this specification, the functions of the XFS Application Programming Interface (API) and Service Provider Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to gain access to service providers. This architecture allows service providers to deliver an open-ended set of capabilities to financial applications based on the Microsoft Windows operating systems, including access to peripheral devices unique to financial institutions. Since the first priority of the CEN members for XFS implementations has been to provide this peripheral device access capability, the examples used relate primarily to device control and physical input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI definition, used by the XFS Manager to communicate with the service providers, together with the set of supporting services provided by the XFS Manager. These elements are combined in a XFS implementation, providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an application uses the API to communicate successfully with a service provider, it should work with another conformant service provider of the same type, developed by another vendor, without any changes.

To work with more than one hardware implementation of a device, an application must retrieve the device capability information – this will allow the application to successfully interact with different variants of the same hardware device. Applications that use the vendor specific fields of XFS commands may not be able to interact successfully with another vendor’s conformant SP. Applications should isolate vendor specific access to devices in order to maximise consistent device control across multiple device SP implementations.

Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or WFSAsyncClose request. The XFS subsystem then closes that session as follows:

SYMBOL 183 \f "Symbol" \s 10 \h
The XFS Manager calls the service provider's WFPClose function.

SYMBOL 183 \f "Symbol" \s 10 \h
The service provider schedules the request for deferred processing, and returns immediately to the XFS Manager. Note that at this point the service handle, hService, is no longer valid.

SYMBOL 183 \f "Symbol" \s 10 \h
At some point, the service provider processes the deferred close request, communicating with the service as necessary to accomplish the request.

SYMBOL 183 \f "Symbol" \s 10 \h
Requests that were issued by the application before the close are executed.

SYMBOL 183 \f "Symbol" \s 10 \h
If the calling application has the service locked under the same hService, the service provider unlocks it automatically (following the standard lock policy as defined in Section 4.8).

SYMBOL 183 \f "Symbol" \s 10 \h
The service cleans up its administrative information (removes WFSRegister entries etc.).

If the XFS subsystem loses connection to an application, it closes the session as described above, and:

SYMBOL 183 \f "Symbol" \s 10 \h
An “application disconnect” event (SYSTEM_EVENT class) is generated.

SYMBOL 183 \f "Symbol" \s 10 \h
Since messages can no longer be posted to the application, any command completion and event notification messages from this service for the application are converted to “undeliverable message” events (SYSTEM_EVENT class).

Note that it is required that some application have registered for system events, or these events are effectively not reported.

When a Service Provider receives a Close request for a session, its behaviour may vary as follows,

· When the session has no outstanding requests the service provider will complete the Close request (even if it is executing a command from another session or has outstanding deferred requests from another session)

· When the session that issues the close request has an outstanding request then the service provider will defer the Close until all outstanding requests are complete.

Application Programming Interface (API) Functions

Clarifications for WFSOpen

Description

Change to description: Initiates a session (a series of service requests terminated with the WFSClose function) between the application and the specified service. This does not necessarily mean that the hardware is opened. This command will return with WFS_SUCCESS even if the hardware is inoperable, offline or powered off. The status of the device can be requested through a GetInfo command.

Comments

Modification: In order to support future XFS implementations with maximum flexibility, two version negotiations take place in WFSOpen processing. An application specifies in the dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (as defined by the events and error codes within this specification and in the separate XFS specifications for specific classes of devices, such as banking printers and cash dispensers) that it can support. If the range of versions specified by the application overlaps the range of versions that the service provider’s implementation can support, the call succeeds. Otherwise the call fails. (The other negotiation that takes place during the open process is between the XFS Manager and the service provider regarding the SPI level. See WFPOpen for details.)

The following sentences are added to the end of the Comments section:

If a valid service provider is available, the Open command will not complete until the service provider and all its dependencies are running. That is, if an out of process executable is required by this service provider, this executable should be running and fully initialized before completion of the Open command.

The starting and stopping of external dependent processes is not defined as the responsibility of the service provider, but the latter has to be aware of and respond correctly to the Open command according to external dependent process state.

In addition, if the specified timeout period expires before dependent external processes have correctly initialized, the service provider must complete and return WFS_ERR_TIMEOUT as expected.

The version negotiation chart is modified as follows:

	dwSrvcVersionsRequired (Application versions)
	lpSrvcVersion.

wLowVerion lpSrvcVersion.

wHighVersion
(Service Provider versions)
	Return status from WFSOpen
	lpSrvcVersion.

wVerion
(Result)

	0x00010001
(1.00)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x00011002
(1.00 - 2.10)
	0x0001 0x0001
(1.00)
	WFS_SUCCESS
	0x0001
(use 1.00)

	0x0B011101
(1.11)
	0x0001 0x0002
(1.00 - 2.00)
	WFS_SUCCESS
	0x0B01
(use 1.11)

	0x0B020003
(2.11 - 3.00)
	0x0001 0x1402
(1.00 - 2.20)
	WFS_SUCCESS
	0x1402
(use 2.20)

	0x00010001
(1.00)
	0x1402 0x0003
(2.20 - 3.00)
	WFS_ERR_SRVC_VERS_TOO_LOW
	0x0000
(fails)

	0x0B010003
(1.11 - 3.00)
	0x0001 0x0001
(1.00)
	WFS_ERR_SRVC_VERS_TOO_HIGH
	0x0000
(fails)

Clarifications for WFSAsyncOpen

Description

Change to description: Initiates a session (a series of service requests terminated with the WFSClose or WFSAsyncClose function) between the application and the specified service. This does not necessarily mean that the hardware is opened. This command will return with WFS_SUCCESS even if the hardware is inoperable, offline or powered off. The status of the device can be requested through a GetInfo command.
Service Provider Interface (SPI) Functions

The service provider functions are described in the following sections, in alphabetical order. The table below shows the SPI functions, the sections in which they are defined, their modes, and the API functions they implement.

The asynchronous SPI functions behaviour is influenced by whether the function is Deferred or Non-deferred [see section 3.8 Exclusive Service & Device Access]. An asynchronous non-deferred function (for example WFPRegister) can be processed completely by the service as soon as it is received. An asynchronous deferred function (for example WFPExecute) cannot be processed completely as soon as it arrives, because it may require hardware and/or operator interaction.

Messages

Clarifications for Device Status Changes

Event Param
dwState
Specifies the new state of the physical device managed by the service as one of the following:

Value
Meaning

WFS_STAT_DEVONLINE
The device is online (i.e., powered on and operable).

WFS_STAT_DEVOFFLINE
The device is offline (e.g. the operator has taken the device offline by turning a switch or pulling out the device).

WFS_STAT_DEVPOWEROFF
The device is powered off or physically not connected.
WFS_STAT_DEVNODEVICE
There is no device intended to be there; e.g. this type of self service machine does not contain such a device or it is internally not configured.
WFS_STAT_DEVHWERROR
The device is inoperable due to a hardware error.

WFS_STAT_DEVUSERERROR
The device is inoperable because a person is preventing proper device operation.

Device Classes

Printers

Class Name

PTR

Clarifications for WFS_INF_PTR_STATUS

The description of the fwMedia field is changed as follows:

Output Param
fwMedia
Change to description: Specifies the state of the print media (i.e., the paper: passbook, single sheet, roll, etc as one of the following flags. This field does not apply to journal printers.
Value
Meaning

WFS_PTR_MEDIAPRESENT
Change to description: Media is inserted in the device. On devices with continuous paper supplies, this value is set when paper is under the print head. On devices with individual sheet supplies, this value is set when paper is successfully inserted/loaded.
Clarifications for WFS_INF_PTR_QUERY_FORM

The description of the lpszUserPrompt field is changed as follows:

Output Param
lpszUserPrompt
Change to description: Pointer to a null-terminated user prompt string. NULL will be returned if the form does not define a value for the user prompt.
Clarifications for WFS_CMD_PTR_CONTROL_MEDIA

Error Codes
The following additional error codes can be generated by this command:

Value
Meaning

WFS_ERR_PTR_NOMEDIAPRESENT
Change to description: No form is present in the device. The control action could not be completed because there is no media in the device, the media is not in a position where it can be controlled, or (in the case of WFS_RETRACT) has been removed.
Clarifications for WFS_EXEE_PTR_NOMEDIA

The event description is changed as follows:

Description
This event specifies that the physical media must be inserted into the device in order for the execute command to proceed.

Event Param
LPSTR

lpszUserPrompt;

lpszUserPrompt
Change to description: Pointer to a null-terminated user prompt string. NULL will be returned if either a form does not define a value for the user prompt or the event is being generated as the result of a command that does not use forms.
Comments
The application may use the lpszUserPrompt in any manner it sees fit, for example it might display the string to the operator, along with a message that the media should be inserted.
Clarifications for Form and Media Definitions

9.2
Form and Media Measurements Changed to read:

The UNIT keyword sections of the form and media definitions specify the base horizontal and vertical resolution as follows:

· the base value specifies the base unit of measurement

· the x and y values specify the horizontal and vertical resolution as fractions of the base value (e.g., an x value of 10 and a base value of MM means that the base horizontal resolution is 0.1mm).

The base resolutions thus defined by the UNIT keyword section of the form definition are used as the units of the form definition keyword sections:

· SIZE (width and height values)

· ALIGNMENT (xoffset and yoffset values)

and of the sub-form definition keyword sections:

· POSITION (x and y values)

· SIZE (width and height values)

and of the field definition keyword sections:

· POSITION (x and y values)

· SIZE (width and height values)

· INDEX (xoffset and yoffset values)

and of the frame definition keyword sections:

· POSITION (x and y values)

· SIZE (width and height values)

· REPEATONX (xoffset value)

· REPEATONY (yoffset value)

The base resolutions thus defined by the UNIT keyword section of the media definition are used as the units of the media definition keyword sections:

· SIZE (width and height values)

· PRINTAREA (x, y, width and height values)

· RESTRICTED (x, y, width and height values)

Identification Card Units

Class Name

IDC
Clarifications for WFS_CMD_IDC_EJECT_CARD

Description
Addition to description. The command completes when the card is positioned at the exit slot of the device, available to the customer.

Clarifications for WFS_CMD_IDC_READ_TRACK

Description
Change to description: Again the next step is reading the tracks specified in the form (see Section 7, Form Definition, for a more detailed description of the forms mechanism). When the SECURE tag is specified in the associated form, the results of a security check via a security module (i.e., MM, CIM86) are added to the track data

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_NOMEDIA
Change to description: The card was removed before completion of the read action (the event WFS_EXEE_IDC_MEDIAINSERTED has been generated). For motor driven devices, the read is disabled; i.e., a card cannot be inserted after this error code is generated.

Clarifications for WFS_CMD_IDC_WRITE_TRACK

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_NOMEDIA
Change to description: The card was removed before completion of the write action (the event WFS_EXEE_IDC_MEDIAINSERTED has been generated). For motor driven devices, the write is disabled; i.e., a card cannot be inserted after this error code is generated.
Clarifications for WFS_CMD_IDC_READ_RAW_DATA

Description
Addition to description: For non-motorized Card Readers which read track data on card exit, then in the circumstance where a call to WFS_CMD_IDC_READ_RAW_DATA is made to read both track data & chip data, then the WFS_ERR_INVALID_DATA error code is returned.

Addition to description: A failure on the security check of the card will not stop valid data being returned.

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_NOMEDIA
Change to description: The card was removed before completion of the read action (the event WFS_EXEE_IDC_MEDIAINSERTED has been generated). For motor driven devices, the read is disabled; i.e., a card cannot be inserted after this error code is generated.

WFS_ERR_IDC_SECURITYFAIL The security module failed reading the cards security sign..

Clarifications for WFS_CMD_IDC_WRITE_RAW_DATA

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_NOMEDIA
Change to description: The card was removed before completion of the write action (the event WFS_EXEE_IDC_MEDIAINSERTED has been generated). For motor driven devices, the write is disabled; i.e., a card cannot be inserted after this error code is generated.
Clarifications for WFS_SRVE_IDC_MEDIAREMOVED

Description
Changed to read: This service event specifies that the inserted card was manually removed by the user.

Clarifications for WFS_USRE_IDC_RETAINBINTHRESHOLD

Description
Changed to read: This user event specifies that the retain bin holding the retained cards reached a threshold.
Clarifications for Form Description

Following paragraph deleted:

The currently active ID card unit (IDCU) form file is configured through the following key

WOSA/XFS_ROOT

FORMS

IDCU

formfile=<path><filename>

Description of SECURE reserved keyword is updated to

Reserved Keywords/Operands
Meaning

SECURE
Change to description: do the security check via the security module (CIM86 or MM). This check is done on Track 3 only
Notes

It is valid to define a field that spans another field separator, e.g. FIELDSEPPOS1+1, FIELDSEPPOS3+1 is valid as is FIELDSEPPOS3-4, FIELDSEPPOS3-1 where a field separator (e.g. FIELDSEPPOS2) lies within this range on the data read from the card. During a read track the field separator is returned within the track data. During a write track the application must ensure the correct number of field separators at the correct location with the correct spacing is included in the data, otherwise an WFS_ERR_IDC_DATASYNTAX error will be returned.

Clarifications for guidance on the roles and responsibilities of an application in EMV:
· EMV Level 2 interaction is handled above the XFS API
· EMV Level 1 interaction is handled below the XFS API
All EMV status information that is defined as a Level 1 responsibility in the EMV specification should be handled below the XFS API.

Cash Dispensers

Class Name

CDM
Clarifications for Section 2. Cash Dispensers

Description
Addition to description: Coin and bill dispensers should be implemented as separate Service Providers to allow an application to be able determine which device faulted for instances where only one of the functions completes successfully.

Clarifications for WFS_INF_CDM_STATUS

Output Param
fwDispenser
Specifies the state of the dispenser cash units as one of the following flags:

Value
Meaning

WFS_CDM_DISPCUSTOP
Change to description: Due to a cash unit failure dispensing is impossible. The dispenser is operational, but no bills can be dispensed because all of the cash units are in an empty or inoperative condition. This state also occurs when a reject/retract cash unit is full or no reject/retract cassette is present. This state can also occur when an application lock or device lock is set on every cash unit.
Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

Description
Changed to read: This command is used to get information about the status and contents of the logical and physical cash units present in the dispenser module.

Addition to description: Empty cash unit locations in the dispenser module will be reported as usType WFS_CDM_TYPENA.

Each logical bill or coin type cash unit can comprise one or more physical cash units. For all other types of cash unit there is a one to one relationship between physical and logical cash unit.

Information on logical cash units is used by the application to process transactions while the information on physical cash units is used during replenishment and maintenance operations.

All counters returned by this command are software counters and therefore might not represent the actual physical cash counts.

Addition to description: The command will return the current settings for the Currency Ids and Denomination values based on either configuration or a subsequent WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CDM_END_EXCHANGE command.
Output Param
usNumber
Change to description: Index number of cash unit structure. Each structure has a unique logical number starting with a value of one (1) for the first structure, and incrementing by one for each subsequent structure.

cCurrencyID
Addition to description: If the usStatus field for this cash unit is WFS_CDM_STATCUNOVAL, it is the responsibility of the application to assign Currency ID to this cash unit.

ulValues
Addition to description: If the usStatus field for this cash unit is WFS_CDM_STATCUNOVAL, it is the responsibility of the application to assign denomination values to cash units.

ulCount
Addition to description: The Count is defined as an unsigned value, if the Count were to decrease through zero then the Count will stick at zero. Actual count of coins/bills of this cash unit inside the CDM (sum of bills inside all physical cash units that belong to this logical cash unit plus number of bills out of these physical cash units inside the reject cassette and in the transport not accessible to card holders). This count will not be incremented for subsequent retract operations.
ulMaximum
Addition to description: For a retract cassette this value specifies the maximum number of retract operations.
usNumPhysicalCUs
Addition to description: Recommend that value is one when logical cash unit relates directly to a physical cash unit.
lppPhysical

ulCount
Change to description: The Count is the number of bills/coins inside the physical cash unit.

Clarifications for WFS_INF_CDM_MIX_TYPES

Output Param
usSubType
Addition to description: Individual vendor defined mix algorithms are defined above hexadecimal 7FFF. All numbers below 8000 hexadecimal are reserved.
Clarifications for WFS_INF_CDM_PRESENT_STATUS

Description
Addition to description:
This command is used to inform about the status of the last dispense and is used only by ATM’s. It is necessary to decide whether the money was in customer access or not. After a reboot this command returns the status of the last dispense before reboot. This status is valid until the next dispense command.
The denominations reported by this command may not accurately reflect the operation if the cash units have been re-configured (e.g if the values associated with a cash unit are changed, or new cash units are configured).
Clarifications for WFS_CMD_CDM_DENOMINATE

Input Param
lpulValues
Change to description: Pointer to a list of ULONGs, specifying the number of coins/bills to take from the cash unit(s). The list corresponds to the array of cash unit structures returned to the last WFS_INF_CDM_CASH_UNIT_INFO command or set in the last WFS_CMD_CDM_SET_CASH_UNIT INFO or WFS_CMD_CDM_END_EXCHANGE commands. The first value in the array is related to the cash unit structure with the index number 1. When more than one physical cash unit exists for a logical cash unit, the device selects the actual physical cash unit to use. Cash units not required in the command, should have their corresponding fields in this array set to zero. If the Application does not wish to specify a denominated amount, it can either set all ULONG members of the array to NULL or set the pointer to the list of ULONGs to NULL.
Clarifications for WFS_CMD_CDM_DISPENSE

Events
Addition to list of events which can be generated:
Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_PRESENT

Description
Change to description: This command is only used for ATMs; it causes presentation of the currency. It can be used only following the WFS_CMD_CDM_DISPENSE command (with bPresent = FALSE), or a WFS_CMD_CDM_RETRACT command (only when the bills were retracted to the transport or escrow).

The command completes when the bills are positioned at the exit slot of the device. A service event is generated to report the user has removed the bills. If no event is received within a reasonable time period, the application should send a WFS_CMD_CDM_RETRACT to clear the bills from the exit. On devices which do not have the ability to detect when bills are taken (see WFS_INF_CDM_CAPABILITIES) the service event is generated as soon as the bills are available to the user.

Addition to description: If a shutter exists, then this will be controlled within the present operation. The shutter will be closed when the customer takes the money or the money is retracted by the service provider.

Events
Addition to list of events which can be generated:
Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_REJECT

Description
Change to description: This command is only used in ATMs. It causes money to be transported from the stacker, transport or escrow into the reject bin. It can be used only following the WFS_CMD_CDM_DISPENSE command (with bPresent = FALSE), or a WFS_CMD_CDM_RETRACT command.
Events
Addition to list of events which can be generated:
Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_RETRACT

Input Param

lpusRetractArea
Addition to description: If there is only one retract area on the device, then this parameter is ignored.

Events
Addition to list of events which can be generated:

Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_CASH_IN

Output Param

lpDenomination
Addition to description: The WFSCDMDENOMINATION structure pointed to by lpDenomination that is returned to the application on completion of a Cash In command contains only the counts for the notes accepted since that particular Cash In command was initiated.

Events
Addition to list of events which can be generated:
Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_SET_CASH_UNIT_INFO

Description
Addition to description: An application may set ulCount within lppPhysical to 0 (zero) to indicate that the application does not require a breakdown of the count and that the Service Provider only needs to maintain the logical count ulCount.
Events
Addition to list of events which can be generated:

Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_START_EXCHANGE

Description
This command is used to start the exchange of cash units as well as their emptying, replenishment, removal or replacement. The command returns the current values in the device and the device itself initiates cash unit removal (for example by means of lowering the cash units). A WFSLock should be performed before this command is initiated, to ensure exclusive control by the replenishment application.

After WFS_CMD_CDM_START_EXCHANGE has been successfully initiated, the CDM enters the exchange state, and accepts only the following functions:

· WFS[Async]Execute, with WFS_CMD_CDM_END_EXCHANGE command only

· WFS[Async]GetInfo commands

· WFSClose

· All other WFS (synchronous and asynchronous) commands
Any other WFS[Async]Execute commands issued when the CDM service is in the exchange state are rejected with an error condition of WFS_ERR_CDM_EXCHANGEACTIVE. If an error occurs at the CDM during the execution of this command, the cash unit values are not returned.

Clarifications for WFS_CMD_CDM_END_EXCHANGE

Description
Addition to description: An application may set ulCount within lppPhysical to 0 (zero) to indicate that the application does not require a breakdown of the count and that the Service Provider only needs to maintain the logical count ulCount.
Events
Addition to list of events which can be generated:

Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

Events
Addition to list of events which can be generated:

Value
Meaning

WFS_USRE_CDM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units..
Clarifications for WFS_SRVE_CDM_CASHUNITINFOCHANGED

Description
Change to description: This service event indicates that a cash unit (logical or physical) has changed in configuration. A physical cash unit may have been removed or inserted or a cash unit (logical or physical) parameter may have changed. This event will also be posted on successful completion of the following commands:

WFS_CMD_CDM_SET_CASH_UNIT_INFO

WFS_CMD_CDM_END_EXCHANGE

WFS_CMD_CDM_CALIBRATE_CASH_UNIT

When a physical cash unit is removed, and there are no other physical cash units of the same denomination (ulValues) remaining, the Cash Unit's logical status (usStatus) becomes WFS_CDM_STATMISSING. If there are other physical cash units of the same denomination remaining, the Cash Unit's appropriate physical component status becomes WFS_CDM_STATMISSING. In both cases, the affected Cash Unit structure is sent in the event.

When a physical cash unit is inserted, and there are no other physical cash units of the same denomination (ulValues) present, a new Cash Unit is employed and sent in the event. If there are other physical cash units of the same denomination present, a new physical component of the existing Cash Unit is employed and that Cash Unit's structure is then sent in the event

The usNumber of the changed cash unit structure pointed to by lpCashUnit is not applicable, an application should issue a WFS_CMD_CDM_CASH_UNIT_INFO command after receiving this event to obtain the new Cash Unit Structures.

The Application should also issue a WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CDM_END_EXCHANGE to populate the note count parameters.
Personal Identification Number Keypads (PIN Pads)

Class Name

PIN
References

	ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA), American National Standards Institute, 1983

	ANSI X9.8-1995, Banking – Personal Identification Number Management and Security, Part 1 + 2, American National Standards Institute

	ISO 9564-1, Banking – Personal Identification Number management and security, Part 1, First Edition 1991-12-15, International Organization for Standardization

	ISO 9564-2, Banking – Personal Identification Number management and security, Part 2, First Edition 1991-12-15, International Organization for Standardization

	IBM, Common Cryptographic Architecture: Cryptographic Application Programming Interface, SC40-1675-1, IBM Corp., Nov 1990

	R:L: Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, v. 21, n.2, Feb 1978, pp. 120-126

	473x Programmers Reference Volume 1 - TP-820399-001A

	473x Programmers Reference Volume 2 - TP-820403-001A

	473x Programmers Reference Volume 3 - TP-820400-001A

	473x Programmers Reference Volume 4 - TP-820404-001A

	473x P-Model Programmers Reference - TP-820397-001A

	473x Log Reference Guide – TP-820398-001A

Clarifications for Section 2. Personal Identification Number Keypads

Addition to description: Key values are passed to the API as binary hexadecimal values, for example: 0123456789ABCDEF = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF

Addition to description: When hex values are passed to the API within strings, the hex digits 0xa to 0xf can be represented by characters in the ranges ‘a’ to ‘f’ or ‘A’ to ‘F’.
Clarifications for WFS_INF_PIN_CAPABILITIES

Output Param

fwType
Change to description: Specifies the type of the PIN pad security module as a combination of the following flags, PIN entry is only possible when both flags defined below are set:

Value
Meaning

WFS_PIN_TYPEEPP
Change to description: electronic PIN pad (keyboard data entry device).
WFS_PIN_TYPEEDM
encryption/decryption module

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value
Meaning

WFS_PIN_CRYPTTRIDESMAC
Change to description: Last Block Triple DES MAC as defined in ISO/IEC 9797-1:1999, using: block length n=64, Padding Method 1 (when bPadding=0), MAC Algorithm 3, MAC length m where 32<=m<=64.
fwPinFormats
Supported PIN formats; a combination of the following flags:

Value
Meaning

WFS_PIN_FORMISO0
Change to description: PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the right, PIN length 4-12 digits, XORed with PAN (Primary Account Number without check number, no minimum length specified, missing digits are filled with 0x00)

WFS_PIN_FORMECI3
Change to description: For ECI3 format the pad character can range from X ' 0 ' through X ' F '. For PIN Keypad Device Class Interface - Programmer's Reference Revision 2.00 then bPadding in the command WFSCMD_PIN_GET_PINBLOCK will override the default padding character for ECI3 and VISA. Because FORMECI3 and FORMVISA are defined to be the same in xfspin.h care must be taken to ensure the correct range of padding characters are used.
WFS_PIN_FORMVISA
Change to description: Form VISA is more commonly known as VISA-2. PIN is preceded by the length (digit), PIN length 4-6 digits. If the PIN length is less than six digits the PIN is filled with X’0’ to the length of six, the padding character can range from X ' 0 ' through X ' 9 '. For PIN Keypad Device Class Interface - Programmer's Reference Revision 2.00 then bPadding in the command WFSCMD_PIN_GET_PINBLOCK will override the default padding character for ECI3 and VISA. Because FORMECI3 and FORMVISA are defined to be the same in xfspin.h care must be taken to ensure the correct range of padding characters are used.

WFS_PIN_FORMDIEBOLDCO
Change to description: PIN with the length of 4 to 12 digits, each one with a value of X’0’ to X’9’, is preceeded by the one-digit coordination number with a value from X’0’ to X’F’, padded with the padding character with a value from X’0’ to X’F’ and may be not encrypted, single encrypted or double encrypted.

fwPresentationAlgorithms
Supported presentation algorithms; a combination of the following flags:

Value
Meaning

WFS_PIN_PRESENT_CLEAR
Change to description: Algorithm for the presentation of a clear text PIN to a chip card. Each digit of the clear text PIN is inserted as one nibble (=halfbyte) into the lpbChipData. See WFS_CMD_PRESENT_IDC for a detailed description.
bIDConnect
Change to description: Specifies whether the PIN pad is directly physically connected to the ID card unit. The value of this parameter is either TRUE or FALSE . If TRUE the PIN will be transported securely during the command WFS_CMD_PIN_PRESENT_IDC.
fwIDKey
Change to description: Specifies if key owner identification (in commands referenced as lpxIdent), which authorizes access to the encryption module, is required. A zero value is returned if the encryption module does not support this capability. Otherwise it will be a combination of the following flags:
Value
Meaning

WFS_PIN_IDKEYINITIALIZATION
Change to description: ID key is returned by the WFS_CMD_PIN_INITIALIZATION command.
WFS_PIN_IDKEYIMPORT
Change to description: ID key is required as input for the WFS_CMD_PIN_IMPORT_KEY and WFS_CMD_PIN_DERIVE_KEY command.
lpszExtra
Addition to description:
A Service Provider may automatically generate a beep on key presses, this is reported by the following key=value pair:

· AUTOBEEP=<0/1> (0 means no beeps are generated automatically, 1 means beeps are generated automatically)

For devices where the secure PIN keypad is integrated within a generic Win32 keyboard then, if the following pair is present,

· “KYBD=COMBINED_WIN32”

then standard Win32 key events will be generated for any key when there is no ‘active’ GET_DATA or GET_PIN command.

Note that XFS continues to support PIN keys define only, and is not extended to support new alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both PIN and generic keyboards.

· When an application wishes to receive XFS-based key information then he can use the XFS GET_DATA & GET_PIN functions.

· No Win32 keystrokes are generated for any key (active or not) in a combined device when GET_DATA or GET_PIN are ‘active’.

· When no GET_DATA or GET_PIN function is ‘active’ then any key press will result in a Win32 key event. These events can be ignored by the application, if required.

Note that this does not compromise secure PIN entry – there will be no Win32 keyboard events during PIN collection.

This clarification does not impact terminals & kiosks with separate PIN & Win32 keyboards. In this case the Win32 behaves purely as a PC keyboard and the PIN device behaves only as an XFS device.

Comments
Addition to comments: The use of RSA is vendor dependent.
Clarifications for WFS_INF_PIN_FUNCKEY_DETAIL

Description
Change to description: This command returns information about the names of the Function Keys supported by the device. Location information is also returned for the supported FDKs (Function Descriptor Keys) this includes screen overlay FDKs.This command should be issued before the first call to WFS_CMD_PIN_GET_PIN or WFS_CMD_PIN_GET_DATA to determine which Function Keys (FKs) and Function Descriptor Keys (FDKs) are available and where the FDKs are located. Then, in these two commands, they can then be specified as Active and Terminate keys and options on the customer screen can be aligned with the active FDKs.
Output Param

ulFuncMask
Addition to description: The defines WFS_PIN_FK_0 through WFS_PIN_FK_9 correspond to numeric digits

usNumberFDKs
Change to description: This value indicates the number of FDK structures returned. This number can be less than the number of keys requested, if any keys are not supported. Only supported FDKs are returned.
lppFDKs
Change to description: Pointer to an array of pointers to FDK structures. It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK. lppFDKs is NULL if no FDKs are requested or supported.
usXPosition
Change to description: For FDKs, specifies the screen position the FDK relates to. This position is relative to the Left Hand side of the screen expressed as a percentage of the width of the screen.
For FDKs along the side of the screen this will be 0 (left side) or 100 (right side, user’s view).
usYPosition
Change to description: For FDKs, specifies the screen position the FDK relates to. This position is relative to the top of the screen expressed as a percentage of the height of the screen.
Addition to description: For FDKs above or below the screen this will be 0 (above) or 100 (below).

Clarifications for WFS_CMD_PIN_CRYPT

Input Param

bPadding
Addition to description: The valid range is 0x00 to 0xff.
Description
Change to description: Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input data is padded to the necessary length mandated by the encryption algorithm using the bPadding parameter. Applications can generate a MAC using an alternative padding method by pre-formatting the data passed and combining this with the standard padding method.
Clarifications for WFS_CMD_PIN_IMPORT_KEY

Input Param

lpIdent
Change to description: Specifies the key owner identification. It is a handle to the encryption module and is returned to the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in WFS_INF_PIN_CAPABILITIES for whether this value is required. NULL if not required. The use of this parameter is vendor dependent.
Clarifications for WFS_CMD_PIN_DERIVE_KEY

Description
Change to description: A key is derived from input data using a key generating key and an initialization vector. The input data can be expanded with a fill-character to the necessary length (mandated by the encryption algorithm being used). The derived key is imported into the encryption module and is used for encryption or decryption operations can then be used for further operations.

Input Param

bPadding
Addition to description: The valid range is 0x00 to 0xff.
lpxIdent
Change to description: Specifies the key owner identification. It is a handle to the encryption module and is returned to the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in WFS_INF_PIN_CAPABILITIES for whether this value is required. NULL if not required. The use of this parameter is vendor dependent.

Clarifications for WFS_CMD_PIN_GET_PIN

Description
Change to description: This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN digit entries are not passed to the application. For each PIN digit, or any other active key entered, an execute notification event WFS_EXEE_PIN_KEY is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The application is not informed of the value entered. The execute notification only informs that a key has been depressed.
Some PIN pad devices do not inform the application as each PIN digit is entered, but locally process the PIN entry based upon minimum PIN length and maximum PIN length input parameters.

When the maximum number of PIN digits is entered and the flag bAutoEnd is true, or a terminate key is pressed after the minimum number of PIN digits is entered, the command completes. If the <Cancel> key is a terminator key and is pressed the command will complete successfully even if the minimum number of PIN digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has been reached) or <Cancel> (can terminate before minimum length is reached). The configuration of this functionality is vendor specific.

If usMaxLen is zero, the service provider does not terminate the command unless the application sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the application must issue a WFSCancel command.
If active the WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the PIN buffer to be cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the PIN buffer to be removed.

There are devices which can not ignore the ENTER key before ulMinLength has been reached, for such devices this command completes successfully. An application will not be able to detect such a device and therefore it is recommended that the application counts the key presses.
Input Param

ulActiveFDKs
Change to description: Specifies a mask of those FDKs which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Change to description: Specifies a mask of those (other) Function Keys which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateFDKs
Change to description: Specifies a mask of those FDKs which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Change to description: Specifies a mask of those (other) Function Keys which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).
Error Codes
The following additional error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_NOTERMINATEKEYS
Change to description: There are no terminate keys specified and usMaxLen is not set to 0 and bAutoEnd is FALSE.
Clarifications for WFS_CMD_PIN_LOCAL_DES

Description
Change to description: The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the requisite data specified by the DES validation algorithm and locally verified for correctness. The local DES verification is based on the IBM 3624 standard. The result of the verification is returned to the application. This command will clear the PIN.
Input Param

lpsValidationData
Change to description: Validation data (normally obtained from card track data) used to validate the correctness of the PIN. The validation data should be an ASCII string.

lpsOffset
Change to description: Offset for the PIN block as an ASCII string; if NULL then no offset is used. The characters in the offset data must be in the ranges ‘0’ to ‘9’, ‘a’ to ‘f’ and ‘A’ to ‘F’.

bPadding
Change to description: Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0f, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.

usMaxPIN
Maximum number of PIN digits to be used for validation. The use of this field is vendor specific.
usValDigits
Change to description: Number of Validation digits to be used for validation. This value specifies the number of PIN digits that will be used for validation. This value ensures that any non‑significant digits entered are removed before validation. The minimum permissible value for usValDigits is four. The use of this field is vendor specific.
Clarifications for WFS_CMD_PIN_CREATE_OFFSET

Description
Change to description: This function is used to generate a PIN Offset that is typically written to a card and later used to verify the PIN with the WFS_CMD_PIN_LOCAL_DES execute command. The PIN offset is computed by combining validation data with the keypad entered PIN. This command will clear the PIN.
Input Param

lpsValidationData
Change to description: Validation data. The validation data should be an ASCII string.
bPadding
Change to description: Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0f, padding is applied after the validation data has been compressed. If the bPadding character is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is compressed.
Clarifications for WFS_CMD_PIN_LOCAL_VISA

Input Param

lpsPAN
Change to description: Primary Account Number from track data, as an ASCII string. lpsPAN should contain the eleven rightmost digits of the PAN (excluding the check digit), followed by the PVKI indicator in the 12th byte.

lpsPVV
Change to description: PIN Validation Value from track data, as an ASCII string with characters in the range ‘0’ to ‘9’. This string should contain 4 digits.
Clarifications for WFS_CMD_PIN_PRESENT_IDC

Input Param

ulPINPointer
Change to description: The byte offset where to start inserting the PIN into lpbChipData. The leftmost byte is numbered 0. See below for an example.
usPINOffset
Change to description: The bit offset within the byte specified by ulPINPointer where to start inserting the PIN. The leftmost bit numbered 0. See below for an example.
Comments
Addition to comments:

Example for the use of the algorithm WFS_PIN_PRESENT_CLEAR:

The structure of a VERIFY command for a French B0 chip is:

	Bytes 0 to 4
	Bytes 5 to 8

	CLA
	INS
	A1
	A2
	Lc
	PIN-Block

	0xBC
	0x20
	0x00
	0x00
	0x04
	0xXX 0xXX 0xXX 0xXX

where the 4 byte PIN block consists of 2 bits that are always zero, 16 bits for the 4 PIN digits (each digit being coded in 4 bits) and 14 bits that are always one:

	Byte 5
	Byte 6
	Byte 7
	Byte 8

	0
	0
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	p
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	Digit 1
	Digit 2
	Digit3
	Digit 4
	

In order to insert the PIN into such a command, the application calls WFS_CDM_PIN_PRESENT_IDC with

ulChipDataLength
9
lpbChipData

0xBC2000000400003FFF
ulPINPointer

5
usPINOffset

2

For a sample PIN „1234“ the PIN block is:
	Byte 5
	Byte 6
	Byte 7
	Byte 8

	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	Digit 1
	Digit 2
	Digit3
	Digit 4
	

resulting in a chip card command of:

	Bytes 0 to 4
	Bytes 5 to 8

	CLA
	INS
	A1
	A2
	Lc
	PIN-Block

	0xBC
	0x20
	0x00
	0x00
	0x04
	0x04 0x8D 0x3F 0xFF

Clarifications for WFS_CMD_PIN_GET_PINBLOCK

Input Param
Typographical error, description “lpsEncKey” should be lpsKeyEncKey

lpsCustomerData
Change to description: The customer data should be an ASCII string. Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN. For ANSI and ISO-0 the PAN (Primary Account Number, without the check number) is supplied,
lpsXORData
Change to description: If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the result of the first encryption by an XOR-operation. This parameter is a string of hexadecimal data that must be converted by the application. For example an XOR operation with 0x0123456789ABCDEF the data must be supplied as 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46 and terminated with 0x00. In other words the application would set lpsXORData to “0123456789ABCDEF\0”. The hex digits 0x0 to 0xf can be represented by characters in the ranges ‘a’ to ‘f’ or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed. If the formatted PIN is not encrypted twice (i.e. if lpsKeyEncKey is NULL) this parameter is ignored.
bPadding
Addition to description: The valid range is 0x00 to 0x0f.

lpsKey
Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is required. If this specifies a double length key, triple DES encryption will be performed. The key referenced by lpsKey must have the WFS_PIN_USEFUNCTION attribute.

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second encryption required. The key referenced by lpsKeyEncKey must have the WFS_PIN_USEFUNCTION attribute.

Output Param
LPWFSXDATA
lpxPinBlock;

lpxPinBlock
Change to description: Pointer to the encrypted/decrypted data PIN block.

Clarifications for WFS_CMD_PIN_GET_DATA

Description
Addition to description: It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK.

Addition to description: Inclusion of the FDK keys within the usMaxLen key count is vendor-dependent. If an application requires entry of a specific number of keys including FDKs then the application should process the WFS_EXEE_PIN_KEY events and cancel the WFS_CMD_PIN_GET_DATA command after the required data has been input.
Input Param

ulActiveFDKs
Change to description: Specifies a mask of those FDKs which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Change to description: Specifies a mask of those (other) Function Keys which are active during the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateFDKs
Change to description: Specifies a mask of those FDKs which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Change to description: Specifies a mask of those (other) Function Keys which must terminate the execution of the command (see WFS_INF_PIN_FUNCKEY_DETAIL).
Error Codes
The following additional error codes can be generated by this command:

Value
Meaning

WFS_ERR_PIN_NOACTIVEKEYS
Change to description: There are no active function keys specified.
Clarifications for WFS_CMD_PIN_INITIALIZATION

Description
Typographical error in paragraph 2, “WFS_EXEC_PIN_IMPORT” should be WFS_CMD_PIN_IMPORT_KEY
Clarifications for WFS_EXEE_PIN_KEY

Description
Change to description: This event specifies that any active key has been pressed at the PIN pad.

Addition to description. It is the responsibility of the application to identify the mapping between the FDK code and the physical location of the FDK.

Event Param

wCompletion
Note: Depending on the chosen implemenation of ulDigit, see below, the wCompletion values are not sufficient to uniquely identify all situations. The content of the event parameters of the WFS_EXEE_PIN_KEY event is therefore vendor dependent. This issue has been resolved in version 3.0 or higher of this specification.
ulDigit
Change to description: Specifies the digit entered by the user. When working in encryption mode (WFS_CMD_PIN_GET_PIN), the value of this field is zero for the numeric FK keys.

The original description of ulDigit was ambiguous, therefore we have different interpretations as to what is returned with this parameter.
Here are two common implementations:

· For each key pressed the corresponding FK or FDK mask value is stored in this field. If this implementation is chosen then it is also common to return WFS_PIN_COMPFDK for wCompletion on all FDK key presses regardless of termination status.

· All FK and FDK keys are represented by a unique value. Typically Windows virtual key codes are returned.
Depository Unit

Class Name

DEP
Clarifications for WFS_CMD_DEP_ENTRY

Description
Change to description: This command starts the entry of an envelope and deposits it into the deposit container. If the envelope entered has an incorrect size and the deposit was not completed, the envelope is returned to the exit slot for removal by the customer. A WFS_SRVE_DEP_ENVTAKEN is sent when the envelope is removed. If the envelope entered has an incorrect size but the deposit was completed, WFS_SUCCESS is returned and a WFS_EXEE_DEP_DEPOSITERROR event is sent reporting a WFS_ERR_DEP_ENVSIZE value.
If a deposit takes place then this command will report a successful operation and any errors detected during the operation will be returned by the WFS_EXEE_DEP_DEPOSITERROR event. If the successful deposit causes the deposit bin to reach a high or full threshold, a WFS_USRE_DEP_DEPTHRESHOLD event will be sent.
Text Terminal Unit

Class Name

TTU
General clarification

Location of Row 0, Column 0 on the display device is top left.

Clarifications for WFS_INF_TTU_STATUS

Output Param
LPWFSTTUSTATUS
lpStatus;
typedef struct _wfs_ttu_status

{

WORD

fwDevice;

WORD

wKeyboard;

WORD

wKeylLock;

WORD

wLEDs [WFS_TTU_LEDS_MAX];

WORD

wDisplaySizeX;

WORD

wDisplaySizeY;

LPSTR

lpszExtra;

} WFSTTUSTATUS, * LPWFSTTUSTATUS;

wKeylLock
Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:

…

Clarifications for WFS_INF_TTU_CAPABILITIES

Output Param
LPWFSTTUCAPS
lpCaps;
typedef struct _wfs_ttu_caps

{

WORD

wClass;

WORD

fwType;

LPWFSTTURESOLUTION *
lppResolutions;

WORD

wNumOfLEDs;

WORD

fwKeys;

BOOL

bKeyLock;

BOOL

bDisplayLight;

WORD

fwKeys;

BOOL

bCursor;

BOOL

bForms;

LPSTR

lpszExtra;

} WFSTTUCAPS, * LPWFSTTUCAPS;

fwKeys
Addition to description: If none of the following types of keys are selected then this indicates that there is no keypad.
Clarifications for WFS_CMD_TTU_WRITE

Description
Change to description: This command displays the specified text on the display of the text terminal unit. The specified text may include the control characters CR (Carriage Return) and LF (Line Feed). The control characters can be included in the text as CR, or LF, or CR LF, or LF CR and all combinations will perform the function of relocating the cursor position to the left hand side of the display on the next line down. If the text will overwrite the display area then the display will scroll.
Input Param

wPosX
Addition to description: The value is a 0 based positive number.

wPosY
Addition to description: The value is a 0 based positive number.

fwTextAttr
Addition to description: If none of the following attribute flags are selected then the text will be displayed as TEXTNORMAL.

fwTextAttr
Typographical error in Value list: WFS_TTU_TEXTUNDERLINED should be WFS_TTU_TEXTUNDERLINE

Clarifications for WFS_CMD_TTU_READ

Input Param

wPosX
Addition to description: The value is a 0 based positive number.

wPosY
Addition to description: The value is a 0 based positive number.

fwTextAttr
Addition to description: If none of the following attribute flags are selected then the text will be displayed as TEXTNORMAL.

fwTextAttr
Typographical error in Value list: WFS_TTU_TEXTUNDERLINED should be WFS_TTU_TEXTUNDERLINE

Sensors and Indicators Units

Class Name

SIU
Clarifications for WFS_INF_SIU_CAPABILITIES

OutPut Param
fwGuidLights [...]
Change to description: Specifies which Guidance Lights are available, and if so, which states they can take. A number of guidance light types are defined below. Vendor specific guidance lights are defined starting from the end of the array. The maximum guidance light index is WFS_SIU_GUIDLIGHTS_MAX. The elements of this array are specified as one of the following flags:

Value
Meaning
WFS_SIU_NOT_AVAILABLE
Change to description: There is no Guidance Light available at this position or the device controls the light directly with no application control possible.

WFS_SIU_AVAILABLE
A Guidance Light is available at this position.

Vendor Dependent Mode

Class Name

VDM
No clarifications

Cameras

Class Name

CAM
No clarifications

page
- 5 of 27 -

